Introduction
Lease-to-own financing options open up access and purchasing power for those with bad credit or no credit. In the US, Shield Leasing offers simple, straight-forward options to help automobile owners get the tires, wheels, and minor auto repairs needed to keep their vehicles on the road. Shield Leasing’s brand promise is an easy application process with instant approval for applicants with low to no credit.
Défis à relever
Solution mise en œuvre
Data orchestration
Des données internes et externes provenant de sources multiples - tierces, internes et fournies par les utilisateurs - ont été orchestrées, assemblées et analysées afin de mieux comprendre les candidats, en étudiant les distributions, les modèles et les anomalies dans les données.
Créer des caractéristiques spécifiques à l'évaluation des risques
Plus les données fournies aux modèles pour prendre des décisions sont bonnes, meilleures sont les décisions. Afin de rassembler les informations les plus pertinentes pour former le modèle, des caractéristiques supplémentaires telles que les ratios, les vitesses et les compteurs de fréquence ont été créées à partir des données d'entrée disponibles. Par exemple, des caractéristiques standard comme le ratio dette/revenu ou des caractéristiques non traditionnelles comme la confiance dans les courriels. Cette opération a été réalisée de manière transparente en utilisant les capacités d'IA automatique de la plateforme RapidCanvas.
Modélisation automatisée et IA explicable
The AutoAI platform automated the creation of the best possible model to predict, at the time of credit application, which applications are risky. With this white box approach, the internal working of the model and the importance of each factor used for prediction can be easily explained. In situations involving credit risk, it's important to understand not only if someone is risky but also why they are risky. Explainability is important for ensuring accountability, fairness, and transparency in automated decision-making systems.
What-if Analysis: Credit evaluation depends on individual applicant profiles as well as the macro economic environment. It is important to be able to simulate ‘What if?’ situations. Play with different features and find how they impact predictions.
Application complète d'intelligence économique
Interactive data apps were generated for business users to review credit predictions and make data-driven decisions. With increased visibility into the risk profile of each applicant, the Shield Leasing team was able to better understand the factors that influenced credit and trends arising from the data.
Mise à jour continue du modèle
With an ever-increasing pool of applicants and changing trends, the model is continually updated to ensure effective predictions are always available for the team at Shield Leasing.
Results and Benefits:
Capacité à s'adapter tout en renforçant la promesse de la marque
Shield Leasing’s brand promise is an easy application process with instant approval for applicants with low to no credit. AI and machine learning allowed Shield Leasing to scale its customer base while ensuring the brand promise could be reinforced.
Augmentation des recettes
Shield was able to detect risky credit applications and positively impact their revenue, to the tune of 10%.
Improved credit risk management
With the insights provided using dynamic real-time machine learning models to predict future outcomes, Shield Leasing could better assess and manage risk both during the credit application and the ongoing payback period.
Des informations plus approfondies sur les clients
The interactive data apps gave the Shield Leasing team a deeper understanding of customer insights. The data apps showcase a 360-degree view of each customer, segment and cluster of users to better understand groups of customers with similar patterns and behaviors, and to analyze and explore alternative outcomes.